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Abstract—Statistical quality control (SQC) applies mul-
tivariate statistics to monitor production processes over
time and detect changes in their performance in terms
of meeting specification limits on key product quality
metrics. These limits are imposed by customers and
typically assumed to be a single target value, however,
for some products, it is more reasonable to target a
range of values. Under this assumption we propose a
multi-stage approach for mapping operating conditions
to product quality classes. We use principal component
analysis (PCA) and a pattern mining algorithm to reduce
dimensionality and identify predictive patterns in time
series of operating conditions in order to improve the
performance of the classifier. We apply this approach to
an industrial machining process and obtain significant
improvements over models trained using features based
on the last value of each process variable.

I. INTRODUCTION

Modern industrial processes are increasingly complex
and produce a large amount of process and quality data
that can be used to optimize their performance. Devel-
opments in data collection and computing capabilities
in the last two decades have made it possible to use
large amounts of data for this purpose. Methods can
be classified in pure data-based and integrated model-
data based methodologies. Among the pure data-based
techniques, multivariate statistical analysis has had huge
success because of the ability of handling large amounts
of data and highly correlated datasets.

Quality relevant process control aims to control the
operating conditions such that the output quality is
maintained at a desired level. Over the last two decades,
research efforts in this area have focused on multivariate
statistical approaches such as Principal Component Anal-
ysis (PCA) and Partial Least Squares (PLS) [4]. Both
techniques extract variable correlations and project the
operating condition data into a lower dimensional space.
The subspace is then monitored in order to detect major
deviations of the quality metrics from their desired level.

Multivariate statistical approaches are generally easily
implemented but have limited capabilities in dealing
with dynamic processes and non linearity in complicated
plants. Moreover they are only able to deal with real
valued targets. In quality relevant control, output quality
specification limits are generally imposed, directly or
indirectly, by customers and often refer to a range of
values, rather than a single target. In these situations, it
makes sense to rephrase the problem of quality control as
a classification task, aiming to control the operating con-
ditions such that the output quality falls within the range.
Doing so, the specification limits partition the space of
operating conditions in two subspaces: in control and out
of control.
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Fig. 1. An example of three operating conditions and one quality
metric data over time. For each parameter, the intervals between
measurements are irregular, and not necessarily aligned with the other
parameters. The dashed lines illustrate the specification limits for the
quality metric.

For solving the classification problem it is important to
define features that summarize the history of the process
and identify patterns in the operating conditions leading
to a situation of out of control. Most classification
algorithms are designed for simple data and are not easily



adapted to time series analysis. A common approach
to feature extraction for this purpose is computing one
or more summary statistics for each time series over
a window of fixed length, but this method doesn’t
allow to exploit more complex relationships between
the variables. Mining temporal data and analyzing these
relationships is made difficult by variability in the sam-
pling intervals and temporal granularity, and missing
data. Over the last decade, pattern mining algorithms
have been used to circumvent this problem and create
features that represent not only the historic behavior of
a univariate time series, but also its relationship to the
other time series in the system.

In this paper we propose a method for data driven
quality control that can deal with quality target ranges,
exploits the history of operating condition data (rather
than just the last value), and is resilient to irregular time
intervals and missing data. The proposed approach is
based on a combination of traditional statistical quality
control with a pattern mining algorithm, exploiting the
large amount of data available without losing the tem-
poral relationships between the operating conditions and
output quality. We evaluate the approach on data from
an industrial machining process used for cutting complex
shapes into metal pieces.

The paper is structured as follows. Section II defines
the problem, followed by a discussion of the related
work in Section III. Our proposed method is described
in Section IV and evaluated in Section V.

II. PROBLEM DEFINITION

An industrial process is represented by quality data
sampled from Y = Rn×q and operating conditions
sampled from X = Rn×m×p, where n, q, m and p
are respectively the number of samples, the number
of quality metrics, the number of operating variables
and the size of the operating window corresponding
to a single quality measurement (see Figure 2). Each
quality metric j ∈ {1, . . . , q} is associated with a set
of specification limits (T j

L, T
j
U ) such that the process is

defined out of control iff any of the quality metrics is
found outside of specification limits, i.e. yi ∈ {0, 1},
with

yi =

{
0 if ∀j ∈ {1, . . . , q} : T j

L ≤ yi,j ≤ T
j
U

1 otherwise
(1)

where yi = 1 means that the process is out of control
at the ith quality measurement. Let f : X → {0, 1} be
a model mapping the operating conditions to in or out
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Fig. 2. An example of samples for the three output quality measure-
ments. The quality metric determines the label (in control or out of
control).

of control. Using the cross entropy cost function, the
objective is to learn a model f̂ , such that

f̂ = arg min
f
−
∑
i

(yi log(f(xi) + (1− yi) log(1− f(xi)))

(2)

III. RELATED WORK

Multivariate statistics has been extensively used in
monitoring of quality variables and detection of quality
problems. Research efforts in this area focus on varia-
tion of the PLS algorithm that can provide a complete
monitoring of the output variations and a concise de-
composition of the input data space into output-relevant
and input-relevant subspaces [4]. The multivariate sta-
tistical approach has two main limitations: it can only
be applied to numeric quality measures, and it does
not take into account the past history of the process
(only the last value). An attempt to design a procedure
that can cope with discretized quality is done in [5],
[7]. The approach proposed combines PCA with Linear
Discriminant Analysis (LDA) successfully applied in
relating operating conditions and product quality in the
steel industry. The problem of including history in the
data can be solved using pattern-based feature selection
techniques to identify local properties or patterns in the
time series.

In [1], [6] patterns are extracted by discretizing the
time series and mining the symbolic intervals to identify
frequent patterns in the data. Each sequence is then
transformed into a binary vector indicating the presence



or absence of the frequent patterns, which is input to
a conventional classifier. They focus on the challenge
of efficiently searching for frequent, relevant and non
redundant features, which can be time consuming and a
serious limitation. The technique we propose allows to
deal with categorical quality metrics, taking into account
the history of the process without sacrificing efficiency
in the searching algorithm.

IV. METHODOLOGY

In this section we summarize our approach for learn-
ing a classifier for out of control conditions in industrial
processes. The basic assumption is that recent history of
operating conditions is more suited to explain the vari-
ability in the labels, then just their last value. However,
learning a classifier from the raw operating conditions
data is difficult because of the large number of variables
and the fact that they are each measured at different and
irregular intervals. We use principal component analysis
(PCA) and a pattern mining algorithm [1] to represent
each instance xi as a fixed-length feature vector x′i,
preserving as much information on the history of the
variables as possible. To do this we apply the following
steps:

1) Project the raw operating condition data into a
lower dimensional space using PCA.

2) Transform each projected instance into multivari-
ate state sequences.

3) Apply a mining algorithm to extract predictive
temporal patterns from the operating conditions.

4) Represent each instance xi as a binary vector using
the patterns obtained at step 2.

Applying this transformation we obtain a training set
that allows the use of standard machine learning classi-
fiers to learn f from the training set D = {(x′i, yi)}ni=1.
The following sections explain the steps of this process.

A. Principal Component Analysis

We use PCA to reduce the number of variables and
extract the latent structure of the operating condition
data. PCA is a non-parametric technique used to project
high dimensional, intercorrelated data into a lower di-
mensional space while retaining as much information
as possible. The new set of variables (principal com-
ponents) are obtained as a linear combination of the
original ones, and are uncorrelated and ordered so that
the top ones explain most of the variance in the original
dataset. Let X be a n ×m matrix where n and m are
respectively the number of samples and the number of
variables measured. Then X̂ = XP where X̂ is an other

n × m matrix, related to X by a linear transformation
P . The columns of P are the principal components of
X and are the eigenvectors of the covariance matrix
CX = 1

nXX
T . The rows of X̂ are the representation

of the original data in the principal components space.
For more details of the PCA algorithm we refer readers
to [8].

B. Temporal Abstraction and Multivariate State Se-
quences representation

Temporal abstraction (TA) is the process of transform-
ing a point time series into a series of state intervals and
is widely used in data mining to aggregate multivariate
time series into a representation that is easier to ana-
lyze. This higher level representation is equivalent to a
smoothing of the data and solves a number of common
problems of time series analysis, such as irregular in-
tervals in the measurements, different granularity across
time series, and missing data.

Instead of a series of points, a variable is represented
by a series of intervals during which the value is con-
stant; the original points are begin and endpoints of these
intervals. Moreover, the values are discretized using an
abstraction alphabet Σ that represents the set of possible
value ranges a variable can assume (Figure 3). Let S
be a state represented by the tuple (F, V ) where F is
a variable and V ∈ Σ. An interval state is a state that
holds over a time interval and is represented by a 4-tuple
E = (F, V, s, e) where F is a variable, V ∈ Σ, and s
and e are respectively the start and end time of the state
interval.

After creating interval states for all the time series
in X̂ , every sequence x̂i ∈ X̂ is represented as a
multivariate state sequence (MSS)

Zi = 〈(E1, ..., El) : Ej.s ≤ Ej+1.s ∧ 1 ≤ j < l〉 (3)

with Zi.e representing the end time of the sequence.

C. Mining of frequent temporal patterns

We use the definition of a Recent Temporal Pattern
(RTP) and the mining algorithm in [1] to find predictive
patterns in our dataset. For the purpose of the RTP
mining algorithm, two types of temporal relationships
are defined:
• Ei is before Ej , denoted as b(Ei, Ej), if Ei ends

before Ej starts, i.e. if Ei.e < Ej.s

• Ei co-occurs with Ej , denoted as c(Ei, Ej), if Ei

starts before Ej and there is a non empty period
of time where both Ei and Ej occur, i.e. if Ei.s ≤
Ej.s ≤ Ei.e



Fig. 3. Example of MSS with two variables measured over 24 time units. The values of S1 and S2 are discretized as low (L0, normal
(N) or high (H) and the sequence is represented as a series of state intervals Z = (E1 = (S2, H, 1, 5), E2 = (S2, N, 2, 14), E3 =
(S2, N, 6, 9), E4 = (S2, H, 10, 13), E5 = (S1, H, 15, 24), E6 = (S2, L, 16, 23))

A temporal pattern TP = ((S1, ..., Sk), R) is a k-
pattern, i.e. an abstract representation of a series of k
states and their pairwise relationships, represented in
the upper triangular matrix R, with Ri,j ∈ {b, c} for
i ∈ {1, ..., k− 1} ∧ j ∈ {i+ 1, ..., k}. Given an MSS Z,
a pattern TP and a maximum gap parameter g, TP is a
Recent Temporal Pattern in Z, denoted RTPg(TP,Z) if
there exists a mapping from the states of TP to the state
intervals of Z (Figure 4). Additionally, the last state of
TP should map to a recent state interval of Z, i.e. S1
maps to Ej ∈ Zi with Zi.e − Ej.e ≤ g, and any pair of
consecutive states in TP should map to state intervals
of Z no more than g away from each other.
Given a dataset D and a gap parameter g, the support for
an RTP TP is defined as supg(TP,D) = |{Zi : Zi ∈
D ∧RTPg(TP,Zi)}|. Then TP is a frequent RTP in D
if supg(TP,D) ≥ σ, for some threshold σ.

Given the inputs σ, g and D, the mining algorithm
finds all frequent single states, then alternates between
two phases until no more RTPs are found:

1) Candidate generation: Generate candidate (k+1)-
patterns by extending k-RTPs backward in time

2) Counting: Obtain the frequent (k+1)-RTPs by
removing all RTPs with supg ≤ σ

Fig. 4. a temporal pattern with states
((S1, H), (S2, H), (S3, H), (S2, H)) and temporal relations
R1,2 = c, R1,3 = c, R1,4 = b, R2,3 = c, R2,4 = b and R3,4 = c

The mining task is performed separately on the two
classes, using a separate σ for each class. This makes
particular sense when the classes are inbalanced: search-
ing for frequent patterns using a global threshold for
supg may result in discarding patterns that are frequent
in the smaller classes but not across the entire dataset.
Once the frequent RTPs are found in each class, they
are combined in a single set Ω and used to transform the
multivariate sequences into binary vectors. For each MSS
Zi we obtain a vector x′i where each x′i,j corresponds to
a pattern TPj ∈ Ω and is equal to 1 iff TPj is an RTP
in Zi and 0 otherwise.

D. Classification

Given a set of multivariate labelled time series we
learn a classifier applying the following steps:

1) Transform all quality metrics into binary variables
according to the specification limits

2) Transform all sequences in X into multivariate
state sequences (MSS)

3) Tranform every MSS in a binary vector where xi =
1 if pattern i is in the sequence, 0 otherwise

4) Use the binary vectors in the training data to learn
a classifier

V. EVALUATION

We apply the methodology described in the previous
sections to a machining process and compare the results
with a model trained on features obtained from the last
value of the process variables, and traditional approaches
to statistical quality control.

A. Experimental Set Up

We consider the case of a production line that uses a
machining process for cutting complex shapes into metal
pieces. Data is collected from several sources:
• Material: every time a new batch of raw materials

arrive at the machining process, several sample



measurements are taken from the full batch of raw
products.

• Tooling: various metrics (including product coun-
ters) regarding the state of the tooling.

• Process: sensor output measured at every machine,
aggregated after producing one item.

• Quality: geometrical quality metrics for pieces,
sampled and measured every few hours per ma-
chine.

For this experiment we only employ 19 process vari-
ables as input of the model, and 4 quality metrics as
target variables. The dataset includes a total of 669
sequences, 117 of which are labelled out of control.
The sets of thresholds for the discretization of the
quality variables to a single binary value are defined by
experts. The segments of operating condition time series
between one quality measurement and the following one,
represent the multivariate sequences to be classified.

B. Results

We first run PCA and transform the original input
matrix into a lower dimensional space keeping the top
3 principal components, then use temporal abstraction
as described in section IV-B. The abstraction alphabet
is defined as Σ = {V L,L,N,H, V H} and we use the
10th, 25th, 50th, 75th and 90th quantile to discretize the
time series with VL (Very Low) for values below the
10th percentile, L (Low) for values between the 10th
and 25th percentile and so on.
Finally we set the minimum support σ to 0.15 and the
gap parameter g to 10 minutes1 and run the mining
algorithm separately on each class to extract predictive
patterns to use as features to build a classifier using linear
discriminant analysis.

We compare the classification performance of three
classifiers:

1) Naive: the features are formed based on the most
recent measurement of the process variables.

2) PLS: the target variable is predicted with a two
step process combining PLS regression on the
quality metrics and discretization of the results.
This is currently the approach used by our indus-
trial partner for quality relevant control of their
machining process [2].

3) RTP: the features correspond to the frequent recent
temporal patterns found in the dataset.

We compare the results of the three methods using
three different metrics: precision and recall calculated

1The values for σ and g were chosen after performing a grid search.

with respect of the out of control class, and overall
accuracy. In terms of business case, we are particularly
interested in maximizing the value of recall, i.e. the
proportion of sequences correctly predicted as out of con-
trol. Figure5 summarizes the results of a cross-validation
process adapted to time series: the model is trained on 3
months worth of data and used to predict the quality for
the following week, computing the evaluation metrics
on these predictions. This step is repeated moving the
training window forward by 1 week until all the data is
exhausted.

The results show that classification methods based on
temporal pattern mining obtain significantly better results
when it comes to predicting out of control sequences.
The recall is improved with increasing the history length,
up to a point. The decrease in recall for very long
histories can be explained by longer histories containing
patterns which are not discriminating and instead add
to the noise, countering the benefit of taking history
into account. The higher accuracy obtained with naive
model is due to the highly unbalanced dataset: the total
number of sequences out of control is relatively small
compared to the in control so that even misclassifying
the large majority of them, the model achieves relatively
high accuracy overall. Even obtaining a lower overall ac-
curacy the method based on pattern mining outperforms
the other methods on recall, suggesting that including
historical behavior can improve the classification of
sequences of operating condition data.

In the current approach, the frequent patterns from all
classes are combined in a single set of patterns, which
are subsequently used as input features for training the
classifier. The resulting set of patterns is prone to contain
short patterns which are common to all classes, similar to
stop words in Natural Language Processing. It remains to
be investigated whether the set of features can be reduced
by focusing on the representative patterns, i.e. those
which are unique for each class or not commonly shared
between classes, in combination with feature selection.

VI. CONCLUSION

Data-driven process control and monitoring has been
a popular field of research over the last two decades.
Research efforts in this area have focused on multivariate
statistical approaches that project the operating condition
data into a lower dimensional space and monitor it to
identify out of control situations. PCA and PLS can be
easily implemented and effective when the relationship
between process and quality variables is linear and the
quality target is clearly specified as single value, but
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Fig. 5. Recall and precision for different history lengths. The error
bards show the standard error of the mean recall or precision.

they have limited capabilities in dealing with dynamic,
non-linear systems and qualitative quality metrics. We
rephrase the issue of quality control into a classification
problem and propose an approach for extracting relevant
features and partitioning the operating conditions in in
control and out of control. Applying temporal abstraction

we were able to overcome common difficulties in the
analysis of multivariate time series, such as irregular in-
tervals, different granularity and missing data, whilst the
use of pattern mining to search for predictive temporal
patterns in both subspaces allows to take into account the
history without the aid of any domain knowledge. We
tested this approach on an industrial machining process
and obtain a significant increase both in precision and
recall of the classification model.
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